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ABSTRACT: Three bipolar hosts, namely TPA-DAF, TPA-
DAF,, and TPA-DAF;, comprising an electron-donating
triphenylamine (TPA) group and electron-accepting 4,5-
diazafluorene (DAF) units are investigated for phosphorescent
organic light-emitting diodes (PhOLEDs). Given the non-
planar structure of the sp*-hybridized C9 atom in DAF unit,
these molecules have a highly nonplanar configuration, good
film-forming property, and high triplet energy (Er) of 2.88—
2.89 eV. Among them, TPA-DAF shows more balanced carrier
injecting/transporting ability, suitable highest occupied mo-
lecular orbital (MO) energy level and higher current density,
and therefore TPA-DAF-based devices exhibit the best
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performances, having an extremely slight efficiency roll-off with current efficiency of 20.0 cd/A at 973 cd/m? 19.5 cd/A at
5586 cd/m?, and 17.6 cd/A at 9310 cd/m” for blue PhAOLEDs; 23.5 cd/A at 1059 cd/m” and 15.3 cd/A at 8850 cd/m?” for green
PhOLEDs; and 12.2 cd/A at 1526 cd/m?, 10.5 cd/A at 5995 cd/m? and 9.2 cd/A at 8882 cd/m? for red PhOLEDs, respectively.
The results also provide a direct proof for the influence of charge balance on the device performance.

KEYWORDS: bipolar host, triphenylamine, 4,S-diazafluorene, phosphorescent diodes

B INTRODUCTION

Consisting of an organometallic dopant and a wide band gap
host material in the emissive region, phosphorescent organic
light-emitting diodes (PhOLEDs) are currently attracting
intensive attention because of the effective utility of both
singlet and triplet excitons." For the development of efficient
PhOLEDs materials, it is essential that the triplet level of the
host should be larger than that of the triplet emitter to prevent
reverse energy transfer from the emitting dopant back to the
host.” Such a requirement becomes particularly challenging for
the blue PhOLEDs, in which the triplet energy of the host is
required to be higher than 2.70 eV.> Up to now, because of
their wide band gap, high triplet energy, and good charge
mobility, triphenylamine (TPA) derivatives,*”” as well as
carbazole derivatives,® "> are most widely explored for host
materials. However, the lack of rigidity in twisted TPA
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molecules may result in the degradation of the thermal and
morphological stabilities as host materials in PhOLEDs.'® Thus
far, many efforts have gone into improving the film
morphological stability without sacrificing the triplet energy
of the TPA host. For example, Shu’s group17 reported the facile
synthesis of a fluorene/triarylamine hybrid, tris[4-(9-phenyl-
fluoren-9-yl)phenylJamine. Ma’s group®'®'? presented the
design of a series of triphenylamine derivatives that were fully
or partially bridged with the bulky spacer rigid fluorene and
triphenylsilyl units, imparting them high morphological
stability. Moreover, the bulky spacer can be electron-trans-
porting groups to balance charge flux and improve the power
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Scheme 1. Molecular Structures of TPA-DAF, TPA-DAF,, TPA-DAF,
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efficiency of devices,” such as oxadiazole, triazole,

phenylphosphine oxide,”*"® benzofuropyridine,”**° tetraaryl-
silane,>"** and 4,5-diazafluorene (DAF).>*™* These bipolar
hosts have advantages arising from more balanced injection and
transport of holes and electrons, which results in a broad
distribution of recombination region within the emitting layer
and a low efficiency roll-off of the devices.

Most of the reported solution-processed PhOLEDs suffered
from low efficiency at practical luminance of 1000 cd/m?* and
hence further improvement of charge balance in hosts is
needed. However, most of reported bipolar hosts were
designed to have a certain ratio of electron-transporting unit
to hole-transporting unit, which may impede devices perform-
ance as perfect charge balance is hardly achieved. One
approache is the use of mixed hosts instead of single host,
which has advantage in that charge transporting properties can
be freely manipulated by changing the composition of the
mixed host.>*® But it is difficult to choose hosts for a mixed
system because many of them are immiscible, thus leading to
phase separation in the film and low efficiency of devices. So an
improved method is to design hosts with similar structure but
with different charge balance capacity, for example, designing a
host with different ratios of hole-transporting moieties to
electron-transporting moieties.”” ~*!

In our previous work, we proposed a new method to
synthesize bipolar hosts with different ratios of electron-
transporting (DAF) to hole-transporting units (TPA) through a
simple Friedel—Crafts reaction. TPA derivatives reacted with 9-
p-methylphenyl-4,5-diazafluoren-9-OH (DAFOH, prepared by
Grignard reaction previously) in the solution of sulfuric
acid:acetic acid (1:100, v/v) to gain TPA-DAF, (n = 1-3,
see Scheme 1) and the structures were fully characterized.** For
all the prepared bipolar hosts, DAF and TPA units are linked
via the sp’-hybridized C-9 atom in the DAF moiety, thus
endowing the molecules with a highly nonplanar configuration
and a high Er. Herein, the influence of the DAF moieties on the
electrochemical properties, photophysical behaviors, and EL
performances of those bipolar host materials are fully
investigated. A direct proof for charge balance’s influence on
devices performance is demonstrated in this article and the
TPA-DAF-based devices show high performances and ex-
tremely slight efficiency roll-off at high luminance.

B EXPERIMENTAL SECTION

Materials and Characterization. TPA-DAF, (TPA-DAF, TPA-
DAF,, TPA-DAF;) are synthesized as in in our previous work.*> TPBI
(1,3,5-tris(N-phenylbenzimidazol-2-yl) benzene), Flrpic [bis(4',6'-
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difluorophenylpyridinato) iridium(III) picolinate], Ir(ppy),(acac)
[iridium (III)bis(2-henylpyridinato-N,C2’) acetylacetonate] and Ir-
(bt),(acac) [bis(2-phenylbenzothiazolato)(acetylacetonate) iridium-
(TI1)] were purchased from a commercial source.

Theoretical calculations on the geometrical and electronic proper-
ties were performed with the Gusssian 09 program package.” B3LYP
(Becke three parameters hybrid functional with Lee-Yang-Perdew
correlation functionals)**** and the 6-31G(d) atomic basis set were
used to determine and optimize the structure. Phosphorescence
spectrum was measured in 2-MeTHF glass matrix at 77 K. Cyclic
voltammetry measurement (CV) was carried on a CHI600 electro-
chemical analyzer (Chenhua, Shanghai, China) at room temperature
with a conventional three-electrode configuration consisting of a glassy
carbon working electrode, a platinum wire auxiliary electrode, and an
Ag/AgCl standard electrode as reference electrode. The sweep speed
was 0.1 V/s. The samples for atomic force microscopy (AFM) test
were prepared as the following: First, the ITO-coated glass substrates
was spin-coated with PEDOT:PSS, and then solution of TPA-DAF,
doped with 15 wt % Flrpic was spin-coated on it and annealed at
temperature of 100 °C for 60 min under nitrogen atmosphere.

Device Fabrication and Characterization. ITO-coated glass
substrates were rinsed in deionized water and then ultrasonicated
sequentially in acetone and ethanol. Immediately prior to device
fabrication, the ITO substrate was treated in a UV-ozone oven for 20
min. Then PEDOT:PSS was spin-coated onto the ITO substrate and
dried at 120 °C for 30 min. After that, the emissive layer materials
were dissolved in chlorobenzene and spin-coated on the PEDOT:PSS
treated substrate. The resulting film was about 35 nm thick, as
measured by a Dektak surface profilometer. Finally, TPBI (35 nm) was
vacuum-deposited as a hole-blocking layer, and Ca (10 nm) and Ag
(100 nm) were deposited as the cathode. The current density, voltage,
and luminance characteristics were recorded simultaneously using a
computer controlled Keithley 2636A Sourcemeter coupled with Si-
photodiodes calibrated with Photo-Research PR-65S5. The EL spectra
were recorded by a PR-65S. All the devices were tested in an inert box
with no protective encapsulation.

B RESULTS AND DISCUSSION

Phosphorescence and Theoretical Calculations Prop-
erties. Scheme 1 shows the molecular structures of TPA-DAF,.
In these molecules, DAF and TPA units are designed to link via
the sp>-hybridized C-9 atom in DAF moiety. These chemical
structures were simulated by the density functional theory
method (B3LYP) at the 6-311+G(d.p.) level. The optimized
conformation with energy minimization shown in Figure 1
suggests that the architecture endows the molecules with a
highly nonplanar configuration, which is expected to be capable
of suppressing such effects as phase separation and 7—7x
stacking. In addition, such configuration can effectively limit the
extent of conjugation in the hosts and is anticipated to result in

DOI: 10.1021/am509014v
ACS Appl. Mater. Interfaces 2015, 7, 9445—9452


http://dx.doi.org/10.1021/am509014v

ACS Applied Materials & Interfaces

Research Article

s

o
P
L ,
- Wl
[/ I
HOMO e L
F
0..' ’
- J‘ ; ..:: ,'.",
LUMO ;«,5‘ B ‘
TPA-DAF TPA-DAF, TPA-DAF,

Figure 1. Calculated HOMO and LUMO distribution for TPA-DAF,,

enhanced E; and make them potential hosts for blue
PhOLEDs. Figure 2a shows the PL spectra of TPA-DAF,
films before and after annealed at 100 °C in a N, atmosphere
for 2 h. In comparison with TPA-DAF and TPA-(DAF),, the
spectrum of TPA-(DAF); blue shifts for about 20 nm which
may result from weaker intermolecular interaction due to larger
extent of steric hindrance. Moreover, after annealing, all the PL
spectra show slight blue-shifts. It can be explained that when
molecules are closely packed, the peak is red-shifted, whereas it
moves to the blue side when intermolecular distances increase
after ;1nnealing.46’47 The phosphorescence (Ph) spectra of three
compounds are shown in Figure 2b. Their nearly coincided Ph
spectra demonstrated that they had the same E; and that the
number of diazafluorene group introduced to the molecule had
little influence on E; because of the nonconjugated structure.
The highest energy vibronic sub-bands of phosphorescent
spectra at ~430 nm were used to calculate the E; and the result
showed that they had high enough Er of 2.88—2.89 ¢V for blue
PhOLEDs. The contributions of carrier transporting groups on
TPA-DAF, TPA-DAF, and TPA-DAF;, were also investigated
through the density functional theory (DFT) calculations
(Figure 1). As can be expected from the molecular structure,
their HOMO and LUMO orbitals are quite localized on the
electron-rich triphenylamine and the electron-deficient 4,5-
diazafluoren fragments, respectively. It is believed that the
separated frontier molecular orbitals can facilitate the balanced
carrier injecting/transporting.'>*® The calculated HOMO and
LUMO orbital data are outlined in Table 1.

Electrochemical Properties. The electrochemical proper-
ties of TPA-DAF, were investigated by cyclic voltammetry
(CV) using 0.1 M n-Bu,NPF as the supporting electrolyte and
Ag/AgCl as the internal standard (Figure 2c). In the anodic
scan in dichloromethane, TPA-DAF, TPA-DAF,, and TPA-
DAF; all exhibited reversible oxidation processes due to their p-
type triphenylamine groups, with half-wave potentials of 0.90,
0.98, and 1.10 V respectively, by which the corresponding
Eyomo was calculated using the equation of Eyoyo = —(E; %
+ 44) to be —5.30, —5.38, —5.50 eV. These values together
with the photophysical data (absorption onset energy*’)
allowed us to estimate the LUMO energy level to be —1.86,
—1.93, and —2.04 eV for TPA-DAF, TPA-DAF, and TPA-
DAF;, respectively. These results, in good agreement with
electrochemical test results, reveal that the introduction of DAF
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Figure 2. (a) Photoluminescence spectra, (b) phosphorescence
spectra, and (c) CV curves of TPA-DAF,.

groups to the triphenylamine core can lead to the decrease in
HOMO and LUMO levels.

Morphology and Charge-Carrier Properties. The film-
forming properties of the TPA-DAF, were also investigated by
AFM as they were vital to device performance. As shown in
Figure 3, the AFM images of solution-processed TPA-DAF,
films doped with 15 wt % Flrpic annealed at temperature of
100 °C reveal the smooth and homogeneous film morphologies
with small values of root-mean-square (RMS) roughness of
0.41 nm for TPA-DAF, 0.40 nm for TPA-DAF,, and 0.69 nm
for TPA-DAF,;, respectively. This demonstrates that TPA-DAF,
featured by sp®-hybridized structure has good film-forming
property.

To investigate the charge-carrier properties of TPA-DAF,,
the hole-only and electron-only devices consisting of the
following structures were fabricated respectively (Figure 4):
ITO/PEDOT:PSS (15 nm)/TPA-DAF, (30 nm)/mCP (15
nm)/Ag and ITO/TPBI (15 nm)/hosts (30 nm)/TPBI (15

DOI: 10.1021/am509014v
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Table 1. Photophysical Properties of TPA-DAF, Molecules

host PH” (nm) Ep (eV) Enomo (eV) ELUMOb (eV) Eg (ev) Egomo’ (eV) Eromo’ (eV) Egc(ev)
TPA-DAF 429 2.89 -5.30 —1.86 3.44 -5.20 -1.73 3.47
TPA-DAF, 430 2.88 —5.38 —-1.93 3.45 —-5.34 -1.78 3.56
TPA-DAF; 430 2.88 =5.50 —2.04 3.46 —-547 —1.86 3.61

“Phosphorescence spectrum of hosts in 2-MeTHF at 77 K. “calculated using equation of LUMO = HOMO + E; from the photophysical data
(absorption onset energy 42 together with electrochemical data (half-wave oxidation potential). “According to DFT calculations at B3LYP/6-

311+G(d.p.).

2.6 nm

TPA-DAF TPA-DAF,

TPA-DAF,

Figure 3. AFM topographic images (S X S um) of the solution-
processed TPA-DAF, films doped with 15 wt % Flrpic at an annealing
temperature of 100 °C for 60 min under a nitrogen atmosphere on the
ITO substrate pre-spin-coated with PEDOT:PSS.
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Figure 4. Current density—voltage for the hole-only and electron-only
devices of TPA-DAF,.

nm)/Ca (10 nm)/Ag. According to the J—V curves of hole-
only devices, the space-charge-limited current (SCLC) hole
mobility were calculated to be 1.9 X 107>, 4.2 X 1077, and 6.3 X
1077 ecm?/(V s) for TPA-DAF, TPA-DAF,, and TPA-DAF,,
respectively. The decrease in the ratio of triphenylamine group
contained in the molecule structures leads to a decrease in hole-
current densities of DAF, TPA-DAF,, and TPA-DAF;, which
can be explained by the higher HOMO energy level and the
increased hole mobility of TPA-DAF compared with those of
TPA-DAF, and TPA-DAF;. However, in contrast, the TPA-
DAF-based device also shows the highest electron-current
density compared to that in the TPA-DAF, and TPA-DAF;-
based devices, with the SCLC electron mobility of 2.5 X 1075,
12X 1075, and 2.6 X 1076 cm?/(V s), respectively. Considering
the same physical properties of 4,5-diazafluorene with higher
proportions in TPA-DAF, and TPA-DAF,;, the relatively lower
electron-transporting properties of these two compounds are
probably due to their highly steric configurations, which
reduces the solid stacking density of the films, and therefore
weakens the electron-transporting capacity. Furthermore, there
was a slight difference between the hole- and electron-current
densities in the TPA-DAF-based device, proving TPA-DAF
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could be the best ambipolar host material compared with TPA-
DAF, and TPA-DAF,.

Electroluminescent Properties. In light of the high triplet
energies of these bipolar materials, blue electrophosphorescent
device B1, B2, and B3 with TPA-DAF, TPA-DAF,, and TPA-
DAF; as a host material was first fabricated, respectively. The
device structure was ITO/PEDOT:PSS (25 nm)/host:Flrpic
1S wt % (30 nm)/TPBI (35 nm)/Ca (10 nm)/Ag, where
PEDOT:PSS was used as hole-injection layer, and TPBI served
as electron-transporting layer. The current density—voltage—
luminance (J—V—L) and current efficiency—luminance (CE—
L) characteristics are shown in Figure 5. As shown in Figure Sa,
in spite of the identical device configuration, the TPA-DAF-
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Figure S. (a) Current density—voltage—luminance; (b) current
efficiency—luminance (inset: EL spectrum) with configuration of
ITO/PEDOT:PSS (25 nm)/host:Flrpic 15 wt % (30 nm)/TPBI (35
nm)/Ca (10 nm)/Ag(100 nm).
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based device exhibited lower turn-on voltage (4.1 V) than TPA-
DAF,- or TPA-DAF;-based device (5.3 V). Moreover, in the
whole investigated voltage range, the TPA-DAF-based device
always delivered higher current density than other devices at a
given voltage. The higher current in TPA-DAF-based device
should result from the facilitated hole injection and balanced
transportation. According to the energy level diagram in Figure
6, the hole injection barrier at the TPA-DAF/PEDOT:PSS

@1- LUMO
3.3 CalAg
U
m
o
o)
-
To| &
L
5.2
=== Flrpic HOMO
=== Ir(ppy),(acac)
- Ir(bt)Z(acac)

Figure 6. Schematic depicting a comparison of the energy levels of
different materials utilized in PhOLEDs.

interface (0.1 eV) is lower than that at the TPA-DAF, or TPA-
DAF,/TPBI interface (0.18—0.3 eV), which is definitely helpful
to enhance hole injection into the emitting layer and result in
the lower driving voltages in TPA-DAF-based device. What’s
more, although the higher LUMO level of TPA-DAF than that
of TPA-DAF, and TPA-DAF; does not seem to be favorable
for electron injection at the TPBI/emitting layer interface, the
facilitation of electron injection by the doped low-LUMO-lying
Flrpic dominates the electron injection process at the TPBI/
emitting layer interface. Therefore, the low-lying LUMO level
of Flrpic and the higher-lying HOMO level of TPA-DAF finally
result in the lower driving voltage in TPA-DAF-based device.
Accordingly, the TPA-DAF-based device exhibited higher
brightness with a maximum value of 21134 cd/m?* at 10.4 V.
In contrast, TPA-DAF,- and TPA-DAF;-based devices exhibit
maximum luminance of 8348 and 6852 cd/m? respectively.
TPA-DAF-based device also has a higher maximum external
quantum efficiency (EQE) of 8.5%, whereas maximum EQE of
the TPA-DAF, and TPA-DAF;-based device are 8.3 and 6.8%,
respectively. At the practical brightness of 100 and 1000 cd/m?,
the driving voltages of the TPA-DAF-based device are merely
5.0 and 5.8 V. What’s more, it should be noted that TPA-DAF-
based device shows a rare slight efficiency roll-off with current
efficiency of 20.0 cd/A at 973 cd/m?, 19.5 cd/A at 5586 cd/m?,
and 17.6 cd/A at 9310 cd/m?, respectively. That is to say, there
is only 12% efficiency roll-off when the luminance increases
from 1000 cd/m* to 10000 cd/m”.

All the devices show almost identical spectra from the Flrpic
dopant with CIE coordinates of (0.20, 0.42), thus indicating
that the excitons are entirely confined in the emitting layer.
Furthermore, the EL spectra do not show voltage dependence
over the whole applied voltage range (Figure S1-S3 in the
Supporting Information).

To test the applicability of the hosts as a green
phosphorescent emitter, the green phosphorescent material,
Ir(ppy),(acac), was selected as the doped emitter to fabricate
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green emitting devices with TPA-DAF, TPA-DAF,, and TPA-
DAF; as hosts, respectively. Figure 7 compares J-V—L and
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Figure 7. (a) Current density—voltage—luminance; (b) current
efficiency—luminance (inset: EL spectrum) with configuration of
ITO/PEDOT:PSS (25 nm)/ host:Ir(ppy),(acac) 7 wt % (30 nm)/
TPBI (35 nm)/Ca (10 nm)/ Ag(100 nm).

CE—L curves of those devices with configuration of ITO/
PEDOT:PSS (25 nm)/host:Ir(ppy),(acac) 7 wt % (30 nm)/
TPBI (35 nm)/Ca (10 nm)/Ag(100 nm). As shown in Figure
7, green PhOLEDs utilized TPA-DAF, TPA-DAF,, TPA-DAF;
as hosts have the maximum luminance, current efficiency, and
EQE of 20854, 13004, and 6882 cd/m?; 24.5, 26.0, and 17.7
cd/A; and 7.6, 6.7, and 4.9%, respectively. Compared with
TPA-DAF;, TPA-DAF, and TPA-DAF, are more suitable for
green PhOLEDs as they had a lower turn-on voltage of 5.5 V
and a much higher luminance and current efficiency. Compared
to the blue PhOLEDs, the green PhOLEDs show higher turn-
on voltages. The reason may lie in that at high doping level,
charge trap is more serious in the Flrpic-based device than that
in Ir(ppy),(acac)-based device, and another charge channel
forms on dopant molecules.*” Moreover, the gap of LUMO
between Flrpic and TPBI is smaller than that of the green
dopant and TPBI. As a result, blue devices show lower turn-on
voltages.

To further evaluate the suitability of the compounds as host
materials for low energy triplet emitters, we fabricated three red
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phosphorescent devices (R1—R3) by using TPA-DAF, TPA-
DAF,, TPA-DAF; as the hosts, with the same configuration as
blue device while using 8 wt % Ir(bt),(acac) as the dopant. The
performance of these red PhOLEDs is shown in Figure 8.
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Figure 8. (a) Current density—voltage—luminance; (b) current
efficiency—luminance (inset: EL spectrum) with configuration of
ITO/PEDOT:PSS (25 nm)/ host:Ir(bt),(acac) 7 wt % (30 nm)/
TPBI (35 nm)/Ca (10 nm)/Ag (100 nm).

Devices R1, R2, and R3 exhibit the maximum current efficiency
of 12.2, 17.2, and 11.6 cd/A with the maximum luminance of
16670 cd/m” at 10.7 V, 9691 cd/m” at 12.2'V, and 3190 cd/m*
at 10.7 V, and maximum EQE of 4.5, 6.5, and 4.6%,
respectively. The luminance and current density of device R1
are also much higher than the corresponding results of devices
R2 and R3 at the same operating voltage, which further proves
the stronger carrier injecting/transporting ability of TPA-DAF
compared with TPA-DAF, and TPA-DAF;. As shown in Figure

8, it is noteworthy that device R1 also shows a relatively slight
efficiency roll-off with current efficiency of 11.1 cd/A at 156
cd/m? 12.2 cd/A at 1526 c¢d/m?, 10.5 cd/A at 5995 c¢d/m?, and
9.2 cd/A at 8882 cd/m? respectively.

All the devices’ performance parameters are summarized in
Table 2.

B CONCLUSION

As a summary, we have presented the comparison of TPA-
DAF,, in which the electron-donor triphenylamine unit was
bridged with different ratios of the electron-acceptor 4,5-
diazafluorene units using TPA and DAFOH reacted in a
sulfuric acid:acetic acid catalytic system. Because the triphenyl-
amine and 4,5-diazafluorene segments were connected through
the sp®>-hybridized C9 atom of the 4,5-diazafluorene, thereby
eliminating extended p-conjugation, these TPA and DAF
hybrids possessed a high triplet energy of 2.88—2.89 eV.
Electrochemistry studies and carrier-only devices revealed that
the bipolar character of TPA-DAF not only improved the hole
injection but also achieved more balanced charge fluxes when
compared to those of other two bipolar hosts. As a result, TPA-
DAF-based devices showed the best performance with
maximum current efficiencies of 20.6, 24.5, and 12.5 cd/A,
and maximum EQE of 8.5, 7.6, and 4.5% for blue, green, and
red PhOLEDs, respectively. What’s more, all TPA-DAF-based
devices exhibited a rare slight efficiency roll-off.
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Further details about EL spectra vs voltages of all the devices,
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Table 2. Performance of OLEDs with Different EMLs

@ 100 cd/m? @ 1000 cd/m*

device V,, (V) Ly, (cd/m*) CE,, (cd/A) PE,, (Im/W) EQE,, (%) CE (cd/A) PE (Im/W) CIE CE (cd/A) PE (Im/W) CIE

B1¢ 4.1 21134 20.6 10.9 8.5 16.6 10.5 0.20,042 20.1 10.8 0.20,0.42
B2 52 8348 204 10.5 8.3 193 9.6 0.20,0.42 17.6 7.6 0.20,0.43
B3 52 6852 16.7 8.5 6.8 162 82 0.19,0.44 14.0 62 0.19,0.43
Gl 5.3 20854 24.5 11.6 7.6 239 11.3 0.34,0.60 23.6 9.7 0.35,0.60
G2 5.5 13004 26.0 11.5 6.7 24.3 11.2 0.33,0.62 24.8 9.7 0.34,0.62
G3 6.1 6882 17.7 7.6 49 17.2 72 0.32,0.62 12.7 45 0.32,0.62
R1 4.5 16670 122 6.3 45 10.8 6.3 0.51,0.48 122 62 0.51,0.48
R2 5.5 9691 172 8.8 6.5 15.6 7.4 0.52,0.47 135 5.6 0.52,0.48
R3 52 3190 11.6 6.0 4.6 114 5.7 0.53,0.46 8.5 3.5 0.53,0.47

“B, G, R are abbreviations of blue, green, and red and 1, 2, 3 represent the devices utilizing TPA-DAF, TPA-DAF,, and TPA-DAF; as hosts,

respectively.
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B ABBREVIATIONS

PhOLEDs, phosphorescent organic light-emitting diodes
TPA, triphenylamine

DAF, diazafluorene

CE, current efficiency

EQE, external quantum efliciency

SCLC, space-charge-limited current
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